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Another Critical Exponent Inequality for 
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The inequality in the title is derived for standard site percolation in any dimen- 
sion, assuming only that the percolation density vanishes at the critical point. 
The proof, based on a lattice animal expansion, is fairly simple and is applicable 
to rather general (site or bond, short- or long-range) independent percolation 
models. 
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1. PREFACE 

The main body of this paper concerns a new critical exponent inequality 
for percolation, which was presented at the 1986 T~ebofi symposium. 
References for the other topics of my T~ebofi talks are as follows. A brief 
survey of rigorous percolation theory may be found in Ref. 13 (other recent 
surveys include Refs. 1 and ll);  included as an appendix of Ref. 13 is a 
previously unpublished 1981 preprint on the relation between Burgers' 
equation and the phase transition in Ising ferromagnets. Results concerning 
the phase transition in one-dimensional 1/r 2 percolation, Ising, and Ports 
models appear in Refs. 3, 5, 7, and 16. In addition, Ref. 3 contains general 
results concerning the Fortuin-Kastelyn representation of Ising and Potts 
models. (I~ Applications of the Fortuin-Kastelyn representation to dilute 
Ising and Potts models will be the topic of a separate paper. (4) 
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2. I N T R O D U C T I O N  

In this paper, I derive a new inequality, 

~>~2/6 (1) 

relating the critical behavior of the cluster size distribution [Pn(Pc)~ 
n ~ - t/~ as n ~ oe] to that of the percolation density [Poo(P) ~ (P -Pc )  ~ as 
P ;Pc]- The proof is a simple one based on lattice animal expansions and 
the inequality is valid, assuming only that 0 <Pc < 1 and that Poo(Pc)= 0, 
for essentially any (site or bond, short- or long-range) independent, trans- 
lation-invariant percolation model in any dimension d. For simplicity, 
however, attention here will be restricted to standard site percolation; the 
interested reader can find in Ref. 6 a presentation of the type of lattice 
animal expansion needed to treat general bond percolation models. 
Rigorous exponent inequalities other than those discussed here may be 
found in review papers (1'11'~3) and the references given there. 

The inequality (1) improves the previous results (e~ that 

~>~ 1/(6- 1) (2) 

and that (see also Ref. 9) 6/> 2, since f l~  1. (s) It should be noted though 
that the proof of inequality (1) yields nothing when P~(Pc)> 0, but that of 
(2) implies fl>~l/6. In certain long-range one-dimensional models, 
P~(pc) > 0. (7) 

While both inequalities (1) and (2) saturate for the percolation mean 
field values (/~ = 1, 6 = 2), the second is actually a "universal" mean field 
inequality, which is also valid for Ising models. (~3) Apparently, the first 
inequality is stronger because it is less universal. The rigorous inequality 
(1), when compared to the nonrigorous values of the percolation exponents 
in low dimensions (see, e.g., Ref. 18), performs fairly well; it misses 
saturation by less than 25 % for d =  2 and less than 10 % for d =  3. 

3. T H E  M A I N  R E S U L T  

We consider nearest neighbor site percolation on the d-dimensional 
hypercubic lattice 7/d with site occupation probability p. We let P,(p) 
denote the probability that the cluster of the origin contains exactly n 
occupied sites (n = 0, 1,..., oo). The critical point Pc is the largest p with 
Poo(P) = 0, i.e., 

Pc = sup{p: P~(p) = O} (3) 
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We also define, for h > O, 

M,.(h) = 1 - ~ Pn(P,.) e-"h (4) 
n = O  

Note that 6 may be defined by 

M c ( h ) - P ~ ( p c ) ~ h  1/~ as h~.0 

The inequality (1) is then an immediate consequence of the next 
proposition, providing P~(p,.)=O. The vanishing of P ~  at the critical 
point, although expected to be valid for all d, has only been rigorously 
proved for d =  2 (17) [but  see Ref. 6, Prop. 1.3ft., and Ref. 14 for sufficient 
conditions for P~(p,,)= 0]. 

Proposition 3. For any d >  1, there is some finite, positive con- 
stant K so that 

[P~(p,.+e)]/[M,.(Ke2)] is bounded as e~0 (5) 

Proof. We use the standard representation 

Pn(P) = ~ P.,(P) =- ~ a,~,p"(1 - p)' (6) 
l l 

where an1 denotes the number of lattice animals with n occupied sites and l 
vacant boundary sites. From the definition (6) of P,,. it follows that 

P.,(p • e) = (1 _+ e/p) ' [  1 -T- ~/(1 - p ) ] '  P.,(p) (7) 

Our basic string of estimates is then 

~> [1 -e2/ (1  - p ) 2 ]  e x p [ - K ( p ) ~ 2 n ]  P,,(p) (8) 
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where the sums are all restricted to n < m. The first inequality of (8) is just 
the Cauchy-Schwarz inequality for doubly indexed sequences. The second 
inequality, which is only valid for small ~, follows from the simple fact that 
a~l (and hence P,t) vanishes unless l < ~ ( 2 d - 1 ) n + l  (for n = 0 ,  1,2,...), 
combined with the estimate that 1 -  u > e 2, for small, positive u. The 
quantity K(p) is given by 

K(p) = p - :  + ( 2 d -  1)(1 - p ) - :  

We set p = Pc in (8) to obtain 

Poo(Pc + ~) ~< 1 - [1 - e2/(1 - pc) 2] [1 - M~(Ke2)] 2 

<~ 2mc(Ke2) + e2/( 1 _ p,)2 (9) 

where K =  K(p~.). Since h/Me(h) is easily seen to stay bounded as h +0 (it 
actually tends to zero, but we will not use this), the proof of (5) is com- 
plete. 

Remark. The exponent Y is determined by 

Z ( p ) =  ~ nP,,(p) 
n < o o  

according to ) / (p)~  ( p c - p )  -~ as P'FPc, and 7' is defined analogously 
as P SPc. It is possible to modify the arguments used above to obtain a 
different (and perhaps simpler) derivation of the inequalities, 

7, 7' >~ 2(1 - 1/(5) lo) 

than the one given in Ref. 14. This new derivation is closely related to the 
one used in the last remark of Ref. 15, which yielded (7 + 7')/2 > / 2 ( 1 -  1/5). 
The required modification of (8) involves the insertion of an extra factor of 
n in the summands and the use of H61der's inequality instead of the 
Cauchy-Schwarz inequality. One finds that for 0 < a < 1, 

[ ) / (Pc -  (1 - a )  e)]"[Z(Pc + ae)]' a 

dMc 
>~ Z ne "K~2P,(p~)=---~(Ke 2) (11) 

r t . <  o o  

for small e, where this K depends on both Pc and a. Thus, if we take (5 as 
defined by d M j d h  ~ h 1/a 1, it follows that a7 + (1 - a) 7'/> 2(1 - 1/(5) for 
any a in (0, 1), which yields (10). 
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